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Parametric instabilities of circularly polarized Alfve n waves in a relativistic
electron-positron plasma
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Dispersion relation and nonlinear evolution of the parametric instabilities of circularly polarizednAlfve
waves in a relativistic electron-positron plasma are investigated by theoretical and numerical approaches. In the
nonrelativistic limit, when 2)S> wé, the characteristics of the instabilities are similar to those in an electron-
ion plasma, except that the modulational instability takes place onf<ifwd/k3, wherew, andv s denote the
plasma frequency and the acoustic speed,@fdk, indicate the frequency and the wave number of the parent
wave. On the other hand, wherm?< w3, two new types of instabilities emerge between the parallel or
antiparallel propagating Alfwelike waves and the parallel propagating Langmuir-like wave. The weakly
relativistic effect is discussed for all the instabilities. The one-dimensional full particle simulation and bico-
herence analysis of the simulation result suggest that successive decay via the interaction between the parallel
propagating Langmuir-like wave and antiparallel propagating Alflilee wave can efficiently generate a
continuum of low frequency electromagnetic waves, which can interact with energetic particles.
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[. INTRODUCTION Sonnerugd11]. Wong and Goldsteifil2] and Terasawat al.
[13] compared the growth rates of the decay and modula-
The particle acceleration and the magnetohydrodynamitional instabilities for dispersive Alfuewaves with an arbi-
(MHD) turbulence are inseparably related to each other. Thrary amplitude. Wong and Goldstdih2] further pointed out
parametric instability is thought to be a convincing candidatehe existence of the beat instability aroukrt ky. In 1990s,
to produce the MHD turbulence. The resonance conditionthe linear dispersion relations derived above are reinvesti-

for the three wave interaction are gated in detail by Jayanti and Hollwdd4], and Hollweg
[15]. The effects of oblique propagation of daughter waves
w3=w;Fw,, Ky=k;*ky, (1)  are also studied by several authdinas and Goldstein

[16,17], and Ghoslet al.[18,19).
where (w1, w,,w3) and (;,kz,ks) are the frequencies and  On the other hand, Terasaveaal. [13] performed self-
wave numbers of the interacting waves. The evidence of theonsistent numerical simulations of the decay instability of
parametric instability of circularly polarized Alfvewaves in circularly polarized Alfvem waves by utilizing a one-
the earth’s foreshock region has been repofted., Spangler  dimensional hybrid simulation code. The numerical simula-
etal. [1,2]). Many authors have studied this instability by tions can treat fully nonlinear dynamics of the system, while
theoretical and numerical approaches. Galeev and Oraevskiost of the past studies were concerned with the linear
[3], and Sagdeev and Galep4] first showed that the circu- analyses. They investigated nonlinear evolution of the wave
larly polarized Alfven waves are subject to parametric decayspectrum as well as heating of the plasma due to the ion
instability. Later, Goldsteir{5] and Derby[6] derived the acoustic wave. Machidat al. [20] also performed hybrid
linear d|sperS|on relation of the decay instability of circularly simulation study of the modulational instability and com-
polarized Alfven waves, as a four-wave interaction betweenpared the results with those given by the DN{d®rivative
a parent Alfve wave and thredparallel and antiparallel nonlinear Schidingen equation(Mio et al. [7,8], Mjolhus
electromagnetic waves and a parallel electrostatic waveg], Spangler and Sheerif21,22, Spangler[23—-25, and
daughter waves. Weakly dispersive Alfvevaves are modu- Mjolhus and Wyller[26]). Hoshino and Goldsteif27] stud-
lationally unstable if the wave number of density perturba-ied the nonlinear wave-wave couplings of the decay and
tion kis much less than that of the parent wyeMio et al.  modulational instabiliies by means of the perturbation
[7,8], Mjolhus [9], Sakai and Sonnerufd0Q]). In this case, theory and the MHD simulations.
three daughter waves all propagate parallel to the parent Most of the above studies have been discussed in the con-
wave. The right- and left-hand polarized parent waves argext of the solar wind plasma. However, the parametric decay
unstable for3>1 andB<1, respectively, wher@= vs,/va processes of the Alfwewaves are important in high energy
is squared ratio of the ion acoustic to Alfvepeeds. A para- astrophysical environment such as the pulsar magnetosphere
metric study of the modulational instability for arbitrary (Arons and Barnard28]) and the neighborhood of extraga-
magnitude of the dispersive effects is given by Longtin andactic radio sourcesGoncalveset al. [29]). These regions

are considered to be filled with the electron-positron plasma.

More than two decades ago, the parametric instabilities of
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Max-Planck-Institute for Extraterrestrial Physics, 85741 Garchingare investigated by Sweeney and Stew&@]. They dis-
Germany. cussed mainly the interaction between the high frequency
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electromagnetic parent wave and the sideband waves via the

space charge fluctuations. Machalslial. [31] showed that J=2 qny;, (7)

almost parallel propagating high frequency transverse elec- )

tromagnetic waves generated in the pulsar magnetosphere

can be unstable through the density modulations parallel to p:E q;n;, (8)

the background magnetic field. Yoon and Zied@p] pro- i

posed a possible mechanism for the observed radiation from

extragalactic radio jets based on the nonlinear interaction bewherev,;=(u;,v, ;) is the velocity,y;= 1/\/1—vj2/c2 the Lor-

tween the electron-positron jet and the intergalactic plasmaentz factorp s the acoustic speedy the densityg; the par-
Recently, the parametric instabilities of circularly polar- ticle chargem, the particle rest mass, the speed of light,

ized Alfven waves in the relativistic electron-positron plasmaand E and B are the electric and magnetic fields, respec-

are investigated by Moz and Gomberoff33]. They ob- tively. The subscript j denotes particle species.

tained the linear dispersion relation and its numerical solu- It is assumed that a circularly polarized Alfveparent

tions assuming there is no space charge. In the electron-iomave propagates parallel to the constant magnetic fgld

plasma, the frequency of the Affaevave should be smaller which is along thex axis. Allowing both electrostatic and

than the ion cyclotron frequend§;. On the other hand, a electromagnetic perturbations, we write

characteristic frequency reflecting the space charge effect is

the electron plasma frequenay. Sincewﬁ?ﬂiz in usual nj=ng+dn;, 9
solar wind plasma, ignoring the space charge effect is justi-

fied when we discuss the low frequency waves like the Al- uj=4u;, (10
fven wave. However, presence of the space charge is essen-

tial in the electron-positron plasma, since the plasma B=By+By+ B, (11
frequency\/fa)p is often less than the cyclotron frequency

Q,. Therefore, it is important to study the parametric insta- V=Vt oV, (12)

bilities of the circularly polarized relativistic Alfve waves

including the effects of the space charge. In the electronwhere the subscript O represents the zeroth-order constant

positron plasma the Alfie and whistler waves have the quantities, subscript p denotes the zeroth-order parent wave,

identical dispersion and thus cannot be distinguished, so wend & represents a small perturbation, respectively. These

will call them both the Alfve waves in this paper. parent and perturbed quantities are further expressed as fol-
The organization of this paper is as follows. In Sec. Il, thelows:

basic equations are introduced and linearized. The obtained

linear dispersion relation is discussed in Secs. Il and IV for B ~

the nonrelativistic and the weakly relativistic cases, respec- B,=—=exp —i¢o)e+c.C., (13

tively. In Sec. V, the numerical simulation of parametric de- V2

cay instability is performed by utilizing one-dimensional

relativistic electromagnetic full particle code. Finally, the re- 1 ) i -
oB= —2[5BJr exp —i¢g,)+B_exp—i¢_)letc.c.,

sults are summarized and discussed in Sec. VI. 2

(14
Il. FORMULATIONS AND BASIC ASSUMPTIONS
on;
Let us consider an electron-positron plasma, governed by 5nj=7’exp(—i¢)+c.c., (15
the following equations.
5 where By, is real, ¢g=KoXx—wot, ¢d+=KiX—w.t, ¢p=kx
(i-f-v-'V ( -V~)=& E+ VixB _Us n 2 —ot, (ke,0:)=(koxtk,wgtw), (Kg,wp) and k,w) are
a7 Vi mg c ng the wave number and frequency of parent wave and density

perturbation,e=(y—iz)/y2 (y and z are the unit vectors

an; along respective directiopsand c.c. denotes the complex
ra =V (np)), (3 conjugate. The parallel and perpendicular velocities are also
written in a same manner.
For the zeroth order, the transverse velocity of each spe-
V-E=4mp, (4)  cies is obtained as
148 Vi @0 Qo7 16
where n=B,/By and Q4;=q;Bo/mgc is the nonrelativistic
_Am_10E cyclotron frequency of species j. The frequency of the parent
VXB=—J+—-—, (6) o ) . )
c c ot wave, wg, is given by the zeroth-order dispersion relation,
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tion of the wave numbek. (22
2
v
c?ks wp 0| 1+ =2 | — K22 | su,= w?( Su,— )
1m0 —— P 17 2¢?
g T wo(Yjwot Qo))
—w[vy(6b, —6b¥)
Here, w, is the plasma frequency. As noted by Munand
p _ _S\*
Gomberoff[33], Qon(Vpr = vy )1,
(23
Czkg . wg B 77_2 Qéj wq 8 0,23 . .
w2 T wo(wo+ Qo)) 2 K2c?\ wot Qo | w?| 1+ o2 — k%02 | 8Ue= — wp( Sup— SU,)
(18)
+w[v b, —5b*)
provides a good approximation of E(L.7) for weakly rela- .
tivistic case. Equation(18) is derived from Eqgs(17) and —Qon(Ver — Ve )],
(16) assuming(wo+(20]-)/w0|>y§j/2c2. However, when the (24)
parent wave has a large amplitude and this inequality is not
satisfied, Eqs(17) and(16) must be used: with this respect, > o 2 o,
a part of the instability analysis by Moma and Gomberoff (Kic™— 03) 8b. = wpky | (8Vpy — Ve )
[33] appears to be misleadifgf. their Fig. 1b)].
Hereafter, all of the variables are written in the unit of n L( Su—v.du,) 25)
parent wave parameters for simplicity, i.e., the frequencies 20 VPOt Vet |
and wave numbers are normalized &g and ky, and the
velocities towq /kg, respectively. From Eq$2)—(15), to the 2 2 2\ k2 ok
first order of the perturbation amplitude, the following eigen- (K=€"~wZ) 0bZ = wpk | (Ovp_ = oVe-)
value equations are obtained after some calculations. "
, + Z(vpﬁup—veéue) , (26)

UP *
‘WP*“L@“)*‘WP* where Qy=eBy/myc, db.=esB./myc, and the asterisk
(*) implies the complex conjugate. In deriving the above
w, equationsp 5/c?,vz/c?<1 is assumed. The above equations
5Up:—k—5b+, are identical to Eqs(27)—(31) of Munoz and Gomberoff

* [33], except that the terms wﬁ(éup— dug), which originate
(199  from the finite space charge, are included in E@8) and

gz

05
1+ E +Qo7]

046406-3



S. MATSUKIYO AND T. HADA

(a) (b)
a |+ | | | | 3 |+ 1 1 1 ]
2t £ - - s t+
e £ - i4b U
8 04 = B So . ?
S $ - 14 $ -
adb b

®
o =N ow
L1 1
%
1T T T 1
(0]
o - N ow
11
P>
D&
T

00 05 10 15 20 25 3.0

4 0:) 1 | | | | 1100‘0 | 1 1 1 1
10 S
02 02

o2 4A | 0 I
|

I
00 05 1.0 11.(5 20 25 30 00 05 1.0 11.(5 20 25 30

FIG. 2. Solutions of Eq(34) with same format as Fig. 1. The

parameters aréa) v=0.1, (b) v<=1.2, andc®=2.0 andQ,=2.0
are fixed.

(24). The dispersion relation is given as a nontrivial solution

(zero determinantof Eqgs.(19)—(26):

Ill. STABILITY ANALYSES FOR NONRELATIVISTIC
PLASMA

In the nonrelativistic limit ¢3/c?v%/c?—0), the disper-
sion relation is obtained as follows:

®[2S+A(C1+Cy+C3+Cy)]—SS+A(C,+Cy)]

—A*(C;C4—C,Cy)=0, (27
QZ 2
A= 077’
2
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o @ ng+( w. 1
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FIG. 3. Amplitude dependence of the maximum growth rate.
The solid lines and the open circles correspond to the solutions of
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2 2 2
w5 Qo
D.=|K——|vi+ ——, (32
B - CZ> A wi-03
where vi/c?=05/2wi=0F/(c?*~1)(Q5—1). Equation

(27) is appropriate for arbitrary amplitude of parent wave,
and gives the same relation for rightR) and left-hand(L)

polarized waves. We discuss in detail the above dispersior

relation for various parameter regime in the following sec-
tions.

Here, it may be convenient to define some labels used i
following figures(Figs. 1-7.

Waves in the background plasnfar »=0)

f* Parallel (forward) propagating Alfv@ waves with
(wi !kt)

b* Antiparallel (backward propagating Alfve waves
with (w+ ,ks)

s* Parallel or antiparallel{ or —) propagating acous-
tic waves with @,k)

| = Positive or negative { or —) frequency Langmuir
waves with ,k)

d* High frequency electromagnetic waves with
(wi 1kt)

Types of the instability

AD  Acoustic decay instabilitfmain daughter waves are
st andb")

AB  Alfven beat instability(main daughter waves affe
andb™)

M Modulational instability(depends

Lb™  Lb~ instability (main daughter waves até andb™)
[see text above Eq39)]

Lf~  Lf~ instability (main daughter waves afté andf™)

[see text above Eq40)]

A. Dispersion relation in a plasma without space charge
(w5 )
Whenw?—, i.e., Ne= dn, (Sue= duy), Eq.(27) is re-
duced as

After some calculations, this is rewritten as

2 2

D.D 5 % [k D ( - ! )
T 1-02 T k(02 -0d)  1-02
o(l+w,)0?2 2 1

x{—( - *)2 0+k]—kD+( —— 2)

(02 —02) k(02 —-03) 1-02
o(l+ o )02
X (—w)o+k
(0209
0 (wito_+tw,o_+032)
+2D,D.—————— 1 =0. (34)
(02— 02)(0® —0))
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FIG. 5. Solutions of Eq(27) with the same format as Fig. 1.
The parameters ar@ w,=0.5,v,=0.1, (b) w,=1.0,v,=0.1, and
0y=2.0 is fixed.

1. Nondispersive case

In the nondispersive Iimit{(zg—mo), Eq. (34) gives

2
(02— K22)(0—K)(@+k+2)(0+k=2)~ —=[(w+k
20p

—2)(k—20— 0?)?+(0+k+2)(k— 2w+ w?)?

—2vi0X(w—k)(0+k+2)(w+k—2)]=0, (35
wherevz=c?/(c?—1) [the last equality holds since we let
here the relativistic Alfva velocity, vac?/(c?+v3) to be
unity]. The above dispersion relation is the same as that ob-
tained by Goldsteif5] and Derby[6] in the no displacement
current limit @43=1 or c?>— ) of the MHD. Numerical so-
lutions of Eq.(35) with c?>=2 are shown in Fig. 1 fofa)
vs=0.1 and(b) vs=1.2. The top panels correspond to the
case withn=0 (no parent wavg so each labeled line rep-
resents the background plasma mode as defined above. The
arrowed intersections show the interactions which will be
unstable for finitep. The middle and bottom panels show the
real and imaginary frequencies fgr=0.1. The labels in the
middle panels indicate the types of the instability which are
also summarized above. This format is common in Figs. 1, 2,
4, and 5. Wherv2<1 (a), usual decay instability, in which
the parent wave decays into parallel propagating acousticlike
wave st and antiparallel propagating Alfnelike waveb™

and parallel propagating electromagnetic wave, (k.),
takes place. Hereafter, we refer to this instability as the
“acoustic” decay instability. Wheny?<1, v,~0O(1), and
0<1—v§~0(1), themaximum growth rate of this instabil-

ity & is obtained as

7(1—v)'”

= (36)
ZUAU;'IZ(].-FUS)
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FIG. 6. Amplitude dependence of the maximum growth rate ;
[solutions of Eq.(27)]. The parameters ar@) w,=0.5, (b) w, ©
=1.0, andv,=0.1 andQ,=2.0 are fixed. W
e AD”
If there is no displacement curremﬁz 1, whereas the pres- 0.01; et
ence of the displacement currefinite c) let v% be larger xoois o
than unity, thus reducing the maximum growth rate, (B@) g fm R, 0
The response of the plasma to the perturbation field is rep: 0.001 ui 2
resented by the conduction current. According to the Max- y ¥
well's equation, when the wave is subluminoisfvénic), [
the conduction current is reduced due to the presence of th 0.0001
displacement current. As? exceeds unityb), the acoustic 01 vy !

decay instability is replaced by the beat instability in which

the beating of the parent wave with the compressional wave FIG. 7. Dependence of the maximum growth ratevgr{solu-
(w,k) generates the paralléel and antiparalleb™ propagat- ~ tions of Eq.(27)]. The parameters afe) »,=0.5, (b) w,=1.0, and
ing Alfvén-like waves(Jayanti and Hollwed14]). We will ~ 7=0.1 andQo=2.0 are fixed. The range Gv3<1 in (a) is ex-
call this as the Alfve beat instability here. The maximum Panded in(c).

growth rate of this instability is derived as whenu§<1 (a), and the Alfva beat instability growth rate is

3 increased when§>1 (b). In order to see the amplitude de-
= +3/2 (370  pendence of each instability, their maximum growth rates are
4203 (v2-1) compared in Fig. 3. Each panel correspondgajov=0.1

) ) and (b) vs=1.2. The solid lines and the open circles are
As pointed out by Jayanti and Hollw¢g4], the growth rate  obtained from Eqs(35) and (34), respectively. Due to the
decreases rapidly ag increases since the density perturba-dispersive effect, the acoustic ded@ffvén beaj instability

tion is hardly excited ifv2 is large. for v2<1 (v2>1) are enhanced aj<0.1 (=<1) and sup-
_ _ pressed aty=0.1 (»=1). In addition, the modulational in-
2. Dispersive case stability and the Alfve beat instability fow ;=0.1 are stabi-

If the dispersion effect is included, the modulational in- lized at sufficiently largen. These properties qualitatively
stability appears in addition to the acoustic decay and th@gdree with the results obtained for the electron-ion plasma
Alfvén beat instabilitiegcf. Wong and Goldsteifil2]). Inan  (€.g., Wong and Goldste{r12], and Hollweg 15]). Note that
electron-ion plasma, the righeft)-hand polarized parent the enhancement of the acoustic decay instabilityy=t0.1
wave is modulationally unstable far>>1(<1). On the appears to be different from past studies since the normaliza-
other hand, in the electron-positron plasma, parent wave dfon factors used hereuy andko) are different from early
either polarization is modulationally unstable whep<1.  WOrks, e.g., Wong and Goldstej2] (2o andv,).

This is because the lowest order dispersieﬁpolakg, is
always negative for the Alfie waves in the electron-
positron plasma. Therefore, the characteristics of the insta-

bilities are similar to those in the electron-ion plasmas with  When wg is finite, we should fully solve E¢27). Then,
left-hand polarized parent waves in which the lowest ordethe Langmuir wave emerges as a normal mode. Numerical
dispersion,s?w,/dk3, is negative. Figure 2 represents the solutions of Eq(27) reveal that the Langmuir branch brings
numerical solutions of Eq(34) for y=2.0. Other param- in drastic changes in the instabilities Whemf;_K(lJrQO)z
eters are the same as in Fig. 1. The modulational instabilityor 2w’2)< 1), whereas characteristics of the instabilities re-
k<1 is seen only whem2<1. We note that, by including main qualitatively the same whenw%>(1+Qo)2. Hence,

the dispersive effect, the Alfvebeat instability appears even only the former case is focused on here.

B. Dispersion relation in a plasma with finite space charge
("’S<°°)
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1. Nondispersive case The above expression givés v2>1, wg>Q(2)(U§—1)2 or
If the dispersive effect is neglected, E87) is reduced as (i) 0<1—v3<2w;<2Qo(1-v?) as the conditions of the
instability. However, as§ is increased iri), the growth rate
(0®—K22) (0 —Kk*Z—2w)(0—K)(0+k+2)(w+k—2) is decreased because of the high thermal pressure, while as
. wg is increased in(ii), the growth rate is reduced due to
N n—z{wg[(w—l—k—Z)(k—Zw—wz)z strong electrostatic restoring force.
VA 2. Dispersive case

2\2
Hotk+2)(k—20+ %) Numerical solutions of Eq27) are shown in Fig. 5, using

—ZinZ(w—k)(w+k+2)(w+k—2)] fthe same parameters as,in Fig. 4 The_r_nodulational instabil-
ity (at k<1) and the Alfve beat instability{ (a) at k~1.2,
—S03(w—k)*(w+k)} (b) at k~1.3] appear, as in the no space charge limit when
we compared Figs. 1 and 2. The Linstability is stabilized
7" L, 9 2, 2 12 in Fig. 5b). The growth rates of the instabilities are com-
+ EQO“’ (=Ko ~va(0™=k9)]=0. (38) pared in Fig. 6 as a function aof. The parameters ar@)

0p=0.5, (b) w,=1.0, andv¢=0.1 andQ;=2.0 are fixed. In
The numerical solutions of Eq38) are plotted in Fig. 4 in F19- 6@, the acoustic decay and the Lbnstabilities have

the same format as Fig. 1. Parameters usedare,=0.5, the Iarg_est af‘d the_ _second largest growth rates, while the
v=0.1, (b) wy=1.0,v,=0.1, with Q= 2.0 for all the pan- modulatlongl mstapﬂny has the smallest growth rate for any
els. The Langpmuir wavels” are seen. In Fig. @), two new 7 The Lf instability has a larger growth rate than that of

types of interactions are observed in addition to the acoustif’® Alfven beat instability at smal. The magnitude of the
decay instability ak~ 1.8, which is the only unstable mode growth rate of the Lb instability is of the same order of that

when the space charge is absgfig. 1(a)]. The interaction of the _acous_ti_c c_iecay _instability. In Fig(t(j, the acoustic
atk~1.3 is the decay type in which the antiparallel propa_decay |n.stab|I|ty is again the mqst domlngnt. pependence of
gating Alfven-like waveb -~ interacts with the parallel propa- the€ maximum growth rates arg is shown in Fig. 7 forQg
gating Langmuir-likel * wave. We call this interaction the —2:0, 7=0.1, and(@) w,=0.5 and(b) w,=1.0. Whenw,

Lb~ instability. The maximum growth rate of this instability =10 [Fig. 7(b)], three types of instabilities are seen. The

is given by acoustic decay instability is dominant f®§50.65, espe-
cially if v2=<0.1 it is much more dominant than the other two
7 [(K=1)(4Q3—K?) 12 instabilities. The maximum growth rates change rgpidly

= 20n 22-K) : (39 aroundv2~0.4, where the acoustic decay and the Affve

beat instabilities degenerate. When 6s6§=<1, the modu-
2—[2w§(1—v§)+4v§]1/2 lational instability is .the most 'dominant, and Whe§>'1 .
K = ’ only the Alfven beat instability is unstable. The situation is
1—v§ more complicated whea,=0.5[Fig. 7(a)]. Figure 1c) is an
expansion of(a). While the acoustic decay instability is the
whereK is the wave number at which the interaction takesmost dominant whew?=<0.45, the Lb instability also has
place. This interaction is destabilized whertK(<2), i.e., the same order of magnitude of maximum growth rate. The
2w§<1—v§. On the other hand, &~ 0.7 another interac- Alfvén beat instability becomes the most dominant for 0.45
tion between the parallel propagating Alfwtike f~ and the Sv550.75, and at the same time the growth rates of the
Langmuir-likel * waves is observed, which we call theLf Lb~ and the acoustic decay instabilities suddenly decrease.

instability. The maximum growth rate is The jump of the growth rates of the acoustic decay and the
Alfvén beat instabilities ab2~0.45 are again due to the
nw, degeneracy of roots. For 0.%5;§51 the modulational in-

(40

6= v (1-p2)¥2° stability is the most dominant, and wh®§>1, only the
A S Alfvén beat instability is unstable.

In Fig. 4(b), the acoustic decayk(-1.8) and the LT (k
~1.4) instabilities are still unstable. We should point out that V. STABILITY ANALYSES FOR RELATIVISTIC PLASMA
Lf~ instability may be in fact stable fOl‘cQS-i— k2u§>1, be-
cause the second term in the brackets in E88)
[—Sﬂé(w— k)?(w+K)] is underestimated in the dispersion-
less limit. The Lb instability is replaced by the Alfwebeat

The relativistic correction of the dispersion relation, Eq.
(27), is discussed here. We consider a weakly relativistic
case, i.e., only terms up to the second order of the parent
wave amplitude is retained<1 is assumed After some

instability (k~1.0) with the maximum growth rate calculations, the following dispersion relation is obtained.
1/2
ey wp—QF(1-0d)? @) @[ Sy+Se+ A(Cy+Cy+Ca+Cy)]
203 [(1-09)*(A~v-20p)° —[8,8c+ AS)(C1+Cy)1=0, (42)
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where TABLE |. Physical parameters for simulation.
Qg,72 ] Parameters of the parent wave Plasma
Se= w? 1+ e kzvg, (43)
Cco(1—Qp)7] 7 0.1 wp 0.4
o 1.93762 Qp 4.0
anz Mode number 32 viplC 0.04
Sp= 0’ 1+ 5——— | k%, (44)
Cco(1+Qp)°]

2w§<1, numerical simulation is performed by using relativ-
So=w?— k2U§_ (45) istic electromagnetic full particle code, in which equation of
motion for individual electrons and positrons and the Max-
Equation(42) is analogous to Eq27), but the expression of well's equations are simultaneously solved in a self-
Sis modified by the relativistic effect, and the third term in consistent manner. The simulation has only one spatial di-
Eq. (27) proportional toA? is omitted due to the weakly Mmension (the x direction, while all the three velocity
relativistic assumption above. We note that, ignoring the disdimensions are retained. In the simulation run below, we let
placement current is quantitatively equivalent to ignoring theNe background dc magnetic field be aligned with xfexis,
relativistic effect, since a factor of 47 (w¥/k3c?) is in- SO thatitis assumed that all the waves we are dealing with
cluded in the relativistic correction terms 8f ands, [Eqs. are either parallel or antiparallel propagating with respect to

X . . the dc magnetic field.
i(:gl)uggg fé’% Therefore, the displacement current is again Again, let us explain here some labels used in remaining

; . o . figures.
Let us briefly discuss the qualitative differences between g

Egs. (42) and (27). In the nondispersive limit, Eq42) is

reduced as P Parent wave
Rap R mode wave generated by the acoustic decay
A o k2v§ , k2v§+2w§ instability _ -
g 0= — || 0~ T (w0—K)(w+k+2) Rip R mode wave generated by the™ instability

Ri R mode wave generated in the nonlinear stage

R, R mode wave generated in the nonlinear stage
Eap Electrostatic wave generated by the acoustic decay
instability
+(w+k+2)(k— 20w+ 0?)? ELp Electrostatic wave generated by thie™ instability
—2viw2(w— K)(w+k+2) E, Electrostat!c wave generated !n the nonl!near stage
E, Electrostatic wave generated in the nonlinear stage

2
X (@+k—2)+ "—2[ 03 (0+k=2)(k— 20— w?)?
Ua

kZUZ L ",
><(w+k—2)]—gzﬂg< 02— 23 (0—K)2(w+K) . A Parameter-s and initial COﬂdItIC?nS- -
g The parallel propagating monochromatic right-hand circu-
larly polarized Alfven wave, represented by E(L3), is in-
troduced as a parent wave. The initial particle velocities are
2_ 272 2/42 272 2/ 42 _given by Eq.(16) with Eqg. (17). The total number of the
wherte_g | 1+|77 /Cd' Ifzvslg ' wglgz ; aEnd &é)g thare, re spatial grids in the simulation system is 16 384. The number
SPECHVELY, replace .biyls’ @p, andz hln 19 ! Ie gqua-f of particles in each cell is 50 for both electrons and posi-
tion becomes identical to E438). Therefore, inclusion of . o The system length is 256.6-40.96/w;) and the

the relativity effectively decreases the acoustic speed, thﬁme step is 0.006 25+0.0120, 1). The physical parameters
plasma frequency, and the parent wave amplitude. As a r&;saq are shown in Table 1. o

sult, the maximum growth rate of the acoustic decay insta-

bility is less (greatey than Eq.(36) for v,<1/3 (v>1/3), B. Simulation results
and those of the Lb and the Lf instabilities are less than
Egs. (39 and (40), respectively. In order to compare the

Alfven beat instability with the nonrelativistic caf&q. g5y scale denotes the wave power in the logarithmic scale.
(41)], the contribution from the fourth-order term of  Aq expected from the linear theory, the parent wéRkde-

should be included in Eqs42) and (46). In the dispersive cays into two antiparallel propagating electromagnetic waves

case, on the other hand, we numerically confirmed that ther, = and R,;) and two parallel propagating electrostatic

modulational instability is suppressed by the relativistic ef-waves €, andE,;,). A small peak atE; is produced via
fect. beating of either Ry andRy,, or Exp andE,,. This point

will be further analyzed later. We should comment here on

V. NUMERICAL SIMULATION the strong vertical bars. The data used here is periodic in

_ . _ . _ space but nonperiodic in time. Especially in the linear stage,

In order to investigate time evolution of the acoustic de-the wave amplitude grows exponentially in time. Therefore,

cay and the Lb instabilities, which are dominant when the Fourier transformation to such data gives broadband

(46)

Figure 8 shows thev-k power spectrum oB, and E,
components in the linear stage (198.4,t<396.0). The
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noise. One may avoid this artifact by using, for instance, the
wavelet transformatiofiDudok de Wit and Krasnosel'skikh
[34)). . . . .. Krasnosel'skikH 34], and references thergim a given time

The time evolution of the spectra is represented in Fig. ggries data. Thécrossbispectrum is defined as
9. The top panel shows power of the electromagnetic wave
which consists of parallel propagatirig mode waves and B(my,my)=(X(mMy)Y(mMy)Z* (m;+m,)), (47)
antiparallel propagating L mode wavese call them theR*
andL~ waves, respectively In the middle panel, the elec- whereX, Y, andZ are the Fourier transform of a given time
tromagnetic wave including~ andL* waves is shown. The seriesm; andm, are the mode numbe(sr the frequencies
bottom panel is the power d&,. In the early stage ot the asterisk denotes the complex conjugate, and the bracket
~200), only the waves expected by the linear theory arelenotes the ensemble average. The bicoherence is obtained
observed Rap, Rip, Eap, andEy,). On the other hand, at by normalizing the bispectrum,
wot~400, E; is generated, and latd®®;, R,, andE, are
excited one after another. One can tell from the resonance ’ |IB(my,m,)|?
condition, Eg.(1), that either coupling betweeR,p and b*(my,m;) = (IX(Mmy)Y(my)Z* (my+my)[)2 (48)
Rp, Or betweerE n andE,,, is producingE;. In general,
however, it is difficult to identify the origin of each wave The finite values ofb?(m;,m,) imply the existence of a
when many wave modes coexist. For instance, there are ghase coherencéthe nonlinear interactionbetween the
few possibilities to produce the wave modgsandE,. One  wave modes atn;, m,, andm;+ms,.
possibility is that bottR, andE; are generated by the inter-  Using the dataset obtained by the numerical simulation,
action of E; and other wave modes. Another possibility is we have performed the bicoherence analysis. Figure 10
that R, is produced by the coupling betwe&n andR;,,  shows the result obtained for the period 198t
andE, is generated from the coupling betweBp and the  <396.0. The upper left panel denotes the bicoherence be-
parent waveP. Therefore, in order to determine the origin of tweenB,(m,), B,(m,), and EX(m;+m,). A strong interac-
waves produced by two wave coupling process, we make Us¢yn occurs between mode numbers =32 and m,=27
of the bicoherence analysis, as described below. ~31. Sincem; andm, correspond to the mode numbers of
the parent wavd® and R,p, m;+m,=59~63 corresponds
to the mode number dE,p . This interaction, therefore, is

The bicoherence analysis is a valuable method to evaluatonfirmed to be the acoustic decay instability. Similarly, the
the third-order correlation(see Dudok de Wit and interaction betweem;=32 andm,=21~23 is shown to be

FIG. 9. Time evolution ok spectra.

1. Bicoherence analysis
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FIG. 10. Bicoherence obtained for the period of 198t
<396.0. (i) The upper left panel: the bicoherence between
B,(m;),B,(m,), andE} (m;+m,). (ii) The upper right panel: the
bicoherence betweeB,(m;),E,(m,) and B (m;+m,). (iii) The
lower panel: the bicoherence betwegg(m;),E,(m,) andE} (m,
+m,). Here,m; andm, denote mode numbers of the correspond-  The time evolution of the parallel driftkgv4/wg) and
ing wave component. thermal Kkovyn/wg) velocities of electrons are shown in Fig.
12(a), and the electron parallel distribution functionscait
=387.5, 581.3, and 775.0 are presented in FighlZThe
rapid increase v 4/ wg andkogv,/ wg at 380< wt <780 is
found in(a). This is explained as follows. Ith), the broad-
ening of the distribution function in €kgv,/we<0.1 at

FIG. 11. Bicoherence obtained for the period of 992t
<1189.6 with same format as Fig. 10.

2. Second decay instability

the Lb™ instability. In the upper right panel, the bicoherence
betweenB,(m,), E,(m,), and B} (m;+mj,) is presented.
The strongest peak ah;=21~23 andm,=7~10 corre-

_sponds_to the interaction betwe®p, Ry, an_d E;. The wot=2387.5 and 581.3 is caused by the resonant trapping due
interaction betweetp, Eip, andE, appears in the lower 4 e acoustic waves driven by the first acoustic decay in-
panel, which is the bicoherence betwelg(m,), Ex(M2),  stapility. In addition, the clear plateau in 02/ wy
and EY (my+m;). There exists an unexpected peak in the<(.3 atw,t=581.3 is produced through the resonant inter-
upper right panel am;=29~31 andm,=7~8. This im-  action with the Langmuir waves excited by the first Lb
plies that theR;, whose amplitude is still small at this time, instability. As a result of these heating and acceleration, the
is going to be produced via the beatingl®f andR,p . dispersion relation of the background plasma is modified.
Figure 11 shows the bicoherence spectrum obtained &the phase velocity dE, is estimated as 0.340.36, and it is
later time period 9928 wyt<1189.6. In this period, a vari- approximately the same as the phase velocity of the Lang-
ety of wave modes are generat@d. Fig. 9. Here, we pay muir wave under the modified condition. Therefore, it is con-
particular attention to the generation mechanisnRgfand  cluded thatR, and E, are excited due to the second 'Lb
E,. First, the strong interaction betwe®y, E,, andP is instabil_ity. The second acoustic decay instability _is hardly
recognized in the upper left panel. At the same tim®,ifis recognllzed because of the strong Landau_damplng of the
produced via the beating &, andR,, as discussed in the &coustic wave. Thg Landgu d_amplng effectively suppresses
preceding section, a peak should appear around the markdge acoustic decay instability sincg~v,, whereas the Lb
point in the upper right panel. The interaction is seen, but théhstability is less affected by the Landau damping because
peak intensity is weak compared with that of the interactiorthe phase velocity of the Langmuir wave is far fram.
betweenR,, E,, andP. Similarly, it is found in the lower
panel that the interaction betweg&n, E,,, andE, is weak.
Hence, we conclude that generationRyf andE, is not via
coupling betweerE, and other wave modes, but is due to  We studied the linear dispersion relation of the parametric
decay(second stageof the parent waveR—R,+E,) in a instabilities of the circularly polarized Alfwewave in the
plasma already thermalized by the first stage of the decay.relativistic and nonrelativistic electron-positron plasmas. The

VI. SUMMARY AND DISCUSSIONS
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(a) of the instability are basically the same as those in the
; \ ; electron-ion plasma, except that the modulational instability
0.165 B takes place only for2<1 in the electron-positron plasma.
kovin/0dg On the other hand, the effect of the space charge cannot be
0.12+ B ignored if 0<2w5<1. The Lb™ and Lf" instabilities appear
in this case. Although the Lf instability is observed when
0.08+ kova/o B 1<2w3<(1+00)? and dispersive effect is neglected, it
may be stable in reality. In fact, we could not find the insta-
bility by numerically solving Eq.(27), even forQ§>1,
which includes the dispersive effect. Only the Alfveat
T T instability is unstable regardless of the valuesmfgf when
0 400 SOOt 1200 1600 v§>1, although the maximum growth rate is small. At the
o same time, the acoustic decay instability is dominantvﬁJr
b <1 in a wide parameter regime. In addition, if<(2w§
(b) <1, the Lb instability also has the maximum growth rate
comparable with the acoustic decay instability.
@yt = 387.5 In the linear analysis, we have not taken into account the
\ kinetic effects of the plasma. They may be essentialgif

0.04 4 o

0.00

~ 15 >1. We suspect that the growth rate of the Alivieeat in-
\é: l/-:\ ot =581.3 stability would be less due to the Landau damping should the
e 10 r4 RN formulation be made kineticallfThe kinetic effects on the
7 / agt=775.0
[t

acoustic decay instability in the electron-ion plasma are in-
5 = vestigated in detail by Inhest¢B5].) Besides, in the high
\ \ energy astrophysical plasma?<c?~1. This is why we
0 : — have mainly discussed the casg<1. However, as men-
-04 -0.2 0.0 0.2 0.4 tioned in the simulation section, the effect of the Landau
kov, /g damping for the acoustic decay instability may not be ne-
glected even in this case, sinee~vy, in the electron-

FIG. 12. (a) Time evolution of electron paraIIeI drift and thermal positron p|asma. In contrast, the phase Ve|ocity of the density
velocities and(b) electron parallel distribution functions a#gt perturbation of the Lb instability is not close tay,, so it
=387.5, 581.3, and 775.0. may be possible that the parameter range where the Lb

instability is dominant is wide When<02w§<l.
analytical expressions of the maximum growth rates of each The weakly relativistic effect reduces the effective acous-
|nStab|l|ty are obtained in the nOﬂdiSperSive plasma, and thﬁc SDEEd, the p|asma frequency, and the effect of the parent
numerical solutions of the dispersion relations are shown fopmplitude. As a result, most of the instabilities, except for the
a variety of parameters both in the dispersive and nondispegcoustic decay instability fars>1/3, are suppressed. In or-
sive plasmas. der to make more accurate analyses on the Alfeeat in-

In the electron-positron plasma, the finite space charggtability, higher order correction terms representing the rela-
effect is essential if 2>S<1. This condition can be realized tjvistic effect should be included. In addition, we have
in many astrophysical environmentin the electron-ion assumed that the plasma temperature is in a nonrelativistic
plasma, usuallyose>ﬂi2, wherew,, {); are the the electron regime. However, in astrophysical applications, the effects
plasma and ion cyclotron frequendiedloreover, the dis- due to relativistically high plasma internal energy may be
placement current cannot be neglected in the high energgssentially important. Furthermore, as increasing the ampli-
astrophysical plasma, since the Alfvspeed can often be tude of the parent wave, in reality, the cyclotron frequency
close to the light speed. Table Il summarizes the types of theecreases aQ,— Q,/v. This effect should be included in
instabilities we discussed in the nonrelativistic plasma. dispersion analysis in the fully relativistic plasma in our fu-

In the no space charge Iimitoé—mc), the characteristics ture discussions.

TABLE Il. Types of the instabilities in the nonrelativistic plasma.

0<2w3<1 1<2w3<(1+00)? (1+00)?<2wi(w5— )
1/02=0 1/03#0 1/03=0 103+#0 1103=0 1I03#0
AD, Lb™, AD, Lb™, AD, AB, AD, AB, AD AD, AB,
vi<i Lf~ AB, Lf~, (Lf~, see text M M
M
v2>1 AB AB AB AB AB AB

S
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The nonlinear evolution of the system has been studied by (a) (b)
using the one-dimensional full particle simulation code. In

addition to the waves expected by the linear theory, various P,(kk) Pik)
waves are excited by the beating of waves and by the suc

cessive decay via the Lhinstability. Decay instabilities both —T1

via the acoustic wave and via the Langmuir wave are ob- —

served. It should be emphasized here that the acoustic wav
is easily Landau damped, while the Langmuir wave can sur-
vive. It is known, in general, that the daughter waves are
unstable for further decay when they still have a large am- P P

plitude (see Terasawat al. [13]). However, if the Landau o .

damping is strong enough, the acoustic decay instability FIG. 13. Sch(_ematlc picture of the successive decay processes
ceases even if the system still has the free enésge Fig. via (a) th_e acoustlc_decay atﬁb) the Lb™ instabilities. Although the_

13). On the other hand, the Chinstability can successively successive acoustic decay is stopped (_:Iue to the Landau damping pf
occur even if the plasma are heated, since the phase Veloc@e acoustic waves, the Landau damping affects less the Langmuir

. . . aves.
of the Langmuir wave is far fronpy,. Successive decay of

Alfven waves via the Langmuir wave channel provides agnergy system, in particular, the relativistic effects may boost
plausible candidate for an efficient generation of plasma turproduction of energetic particles, since the low frequency

bulence. , , waves excited due to the inverse cascading process preferen-
We should note that our present simulation has not yefially interact with heavy(high energy particles.
reached the final state, because of the slow evolution of the

system due to insufficient energy of the parent wave. Hence,
the simulation with higher energy should be performed for
longer running time in the near future, using oirf@r more We sincerely thank V. V. Krasnosel'skikh, B. Lembege, B.
dimensional particle code. The particle acceleration id_efebvre, and A. C.-L. Chian for valuable discussions. This
closely related with generation of the turbulence. In a highpaper has been financially supported by JSPS in Japan.
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