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Parametric instabilities of circularly polarized Alfvé n waves in a relativistic
electron-positron plasma

S. Matsukiyo* and T. Hada
Department of Earth System Science and Technology, Kyushu University, Fukuoka, 816-8580, Japan

~Received 11 June 2002; published 30 April 2003!

Dispersion relation and nonlinear evolution of the parametric instabilities of circularly polarized Alfve´n
waves in a relativistic electron-positron plasma are investigated by theoretical and numerical approaches. In the
nonrelativistic limit, when 2vp

2.v0
2 , the characteristics of the instabilities are similar to those in an electron-

ion plasma, except that the modulational instability takes place only ifvs
2,v0

2/k0
2 , wherevp andvs denote the

plasma frequency and the acoustic speed, andv0 , k0 indicate the frequency and the wave number of the parent
wave. On the other hand, when 2vp

2,v0
2 , two new types of instabilities emerge between the parallel or

antiparallel propagating Alfve´n-like waves and the parallel propagating Langmuir-like wave. The weakly
relativistic effect is discussed for all the instabilities. The one-dimensional full particle simulation and bico-
herence analysis of the simulation result suggest that successive decay via the interaction between the parallel
propagating Langmuir-like wave and antiparallel propagating Alfve´n-like wave can efficiently generate a
continuum of low frequency electromagnetic waves, which can interact with energetic particles.

DOI: 10.1103/PhysRevE.67.046406 PACS number~s!: 52.35.Mw, 52.20.2j, 52.65.2y
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I. INTRODUCTION

The particle acceleration and the magnetohydrodyna
~MHD! turbulence are inseparably related to each other.
parametric instability is thought to be a convincing candid
to produce the MHD turbulence. The resonance conditi
for the three wave interaction are

v35v16v2 , k35k16k2 , ~1!

where (v1 ,v2 ,v3) and (k1 ,k2 ,k3) are the frequencies an
wave numbers of the interacting waves. The evidence of
parametric instability of circularly polarized Alfve´n waves in
the earth’s foreshock region has been reported~e.g., Spangler
et al. @1,2#!. Many authors have studied this instability b
theoretical and numerical approaches. Galeev and Orae
@3#, and Sagdeev and Galeev@4# first showed that the circu
larly polarized Alfvén waves are subject to parametric dec
instability. Later, Goldstein@5# and Derby@6# derived the
linear dispersion relation of the decay instability of circula
polarized Alfvén waves, as a four-wave interaction betwe
a parent Alfvén wave and three~parallel and antiparalle
electromagnetic waves and a parallel electrostatic wa!
daughter waves. Weakly dispersive Alfve´n waves are modu
lationally unstable if the wave number of density perturb
tion k is much less than that of the parent wavek0 ~Mio et al.
@7,8#, Mjolhus @9#, Sakai and Sonnerup@10#!. In this case,
three daughter waves all propagate parallel to the pa
wave. The right- and left-hand polarized parent waves
unstable forb.1 andb,1, respectively, whereb5vsi

2/vA
2

is squared ratio of the ion acoustic to Alfve´n speeds. A para
metric study of the modulational instability for arbitrar
magnitude of the dispersive effects is given by Longtin a
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Sonnerup@11#. Wong and Goldstein@12# and Terasawaet al.
@13# compared the growth rates of the decay and modu
tional instabilities for dispersive Alfve´n waves with an arbi-
trary amplitude. Wong and Goldstein@12# further pointed out
the existence of the beat instability aroundk'k0. In 1990s,
the linear dispersion relations derived above are reinve
gated in detail by Jayanti and Hollweg@14#, and Hollweg
@15#. The effects of oblique propagation of daughter wav
are also studied by several authors~Vinas and Goldstein
@16,17#, and Ghoshet al. @18,19#!.

On the other hand, Terasawaet al. @13# performed self-
consistent numerical simulations of the decay instability
circularly polarized Alfvén waves by utilizing a one-
dimensional hybrid simulation code. The numerical simu
tions can treat fully nonlinear dynamics of the system, wh
most of the past studies were concerned with the lin
analyses. They investigated nonlinear evolution of the w
spectrum as well as heating of the plasma due to the
acoustic wave. Machidaet al. @20# also performed hybrid
simulation study of the modulational instability and com
pared the results with those given by the DNLS~derivative
nonlinear Schro¨dinger! equation~Mio et al. @7,8#, Mjolhus
@9#, Spangler and Sheerin@21,22#, Spangler@23–25#, and
Mjolhus and Wyller@26#!. Hoshino and Goldstein@27# stud-
ied the nonlinear wave-wave couplings of the decay a
modulational instabilities by means of the perturbati
theory and the MHD simulations.

Most of the above studies have been discussed in the
text of the solar wind plasma. However, the parametric de
processes of the Alfve´n waves are important in high energ
astrophysical environment such as the pulsar magnetosp
~Arons and Barnard@28#! and the neighborhood of extraga
lactic radio sources~Goncalveset al. @29#!. These regions
are considered to be filled with the electron-positron plasm
More than two decades ago, the parametric instabilities
circularly polarized waves in the electron-positron plas
are investigated by Sweeney and Stewart@30#. They dis-
cussed mainly the interaction between the high freque

e,
,
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electromagnetic parent wave and the sideband waves via
space charge fluctuations. Machabeliet al. @31# showed that
almost parallel propagating high frequency transverse e
tromagnetic waves generated in the pulsar magnetosp
can be unstable through the density modulations paralle
the background magnetic field. Yoon and Ziebell@32# pro-
posed a possible mechanism for the observed radiation f
extragalactic radio jets based on the nonlinear interaction
tween the electron-positron jet and the intergalactic plas

Recently, the parametric instabilities of circularly pola
ized Alfvén waves in the relativistic electron-positron plasm
are investigated by Mun˜oz and Gomberoff@33#. They ob-
tained the linear dispersion relation and its numerical so
tions assuming there is no space charge. In the electron
plasma, the frequency of the Alfve´n wave should be smalle
than the ion cyclotron frequencyV i . On the other hand, a
characteristic frequency reflecting the space charge effe
the electron plasma frequencyvpe. Sincevpe

2 @V i
2 in usual

solar wind plasma, ignoring the space charge effect is ju
fied when we discuss the low frequency waves like the
fvén wave. However, presence of the space charge is es
tial in the electron-positron plasma, since the plas
frequencyA2vp is often less than the cyclotron frequen
V0. Therefore, it is important to study the parametric ins
bilities of the circularly polarized relativistic Alfve´n waves
including the effects of the space charge. In the electr
positron plasma the Alfve´n and whistler waves have th
identical dispersion and thus cannot be distinguished, so
will call them both the Alfvén waves in this paper.

The organization of this paper is as follows. In Sec. II, t
basic equations are introduced and linearized. The obta
linear dispersion relation is discussed in Secs. III and IV
the nonrelativistic and the weakly relativistic cases, resp
tively. In Sec. V, the numerical simulation of parametric d
cay instability is performed by utilizing one-dimension
relativistic electromagnetic full particle code. Finally, the r
sults are summarized and discussed in Sec. VI.

II. FORMULATIONS AND BASIC ASSUMPTIONS

Let us consider an electron-positron plasma, governed
the following equations.

S ]

]t
1vj•“ D ~g jvj!5

qj

m0
S E1

vj3B

c D2
vs

2

n0
“nj , ~2!

]nj

]t
52“•~njv j!, ~3!

“•E54pr, ~4!

“3E52
1

c

]B

]t
, ~5!

“3B5
4p

c
J1

1

c

]E

]t
, ~6!
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J5(
j

qjnjvj , ~7!

r5(
j

qjnj , ~8!

wherevj5(uj ,v' j ) is the velocity,g j51/A12vj
2/c2 the Lor-

entz factor,vs the acoustic speed,nj the density,qj the par-
ticle charge,m0 the particle rest mass,c the speed of light,
and E and B are the electric and magnetic fields, respe
tively. The subscript j denotes particle species.

It is assumed that a circularly polarized Alfve´n parent
wave propagates parallel to the constant magnetic fieldB0
which is along thex axis. Allowing both electrostatic and
electromagnetic perturbations, we write

nj5n01dnj , ~9!

uj5duj , ~10!

B5B01Bp1dB, ~11!

v' j5vpj1dvj , ~12!

where the subscript 0 represents the zeroth-order cons
quantities, subscript p denotes the zeroth-order parent w
and d represents a small perturbation, respectively. Th
parent and perturbed quantities are further expressed as
lows:

Bp5
Bp

A2
exp~2 if0!ê1c.c., ~13!

dB5
1

A2
@dB1 exp~2 if1!1dB2 exp~2 if2!#ê1c.c.,

~14!

dnj5
dnj

2
exp~2 if!1c.c., ~15!

where Bp is real, f05k0x2v0t, f65k6x2v6t, f5kx
2vt, (k6 ,v6)5(k06k,v06v), (k0 ,v0) and (k,v) are
the wave number and frequency of parent wave and den
perturbation,ê5( ŷ2 i ẑ)/A2 (ŷ and ẑ are the unit vectors
along respective directions!, and c.c. denotes the comple
conjugate. The parallel and perpendicular velocities are a
written in a same manner.

For the zeroth order, the transverse velocity of each s
cies is obtained as

vpj

c
52

v0

ck0

V0jh

g jv01V0j
, ~16!

whereh5Bp /B0 and V0j5qjB0 /m0c is the nonrelativistic
cyclotron frequency of species j. The frequency of the par
wave,v0, is given by the zeroth-order dispersion relation
6-2
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c2k0
2

v0
2 512(

j

vp
2

v0~g jv01V0j!
. ~17!

Here,vp is the plasma frequency. As noted by Mun˜oz and
Gomberoff@33#,

c2k0
2

v0
2 512(

j

vp
2

v0~v01V0j!
F12

h2

2

V0
2

j

k0
2c2 S v0

v01V0j
D 3G ,

~18!

provides a good approximation of Eq.~17! for weakly rela-
tivistic case. Equation~18! is derived from Eqs.~17! and
~16! assumingu(v01V0j)/v0u@vpj

2 /2c2. However, when the
parent wave has a large amplitude and this inequality is
satisfied, Eqs.~17! and ~16! must be used: with this respec
a part of the instability analysis by Mun˜oz and Gomberoff
@33# appears to be misleading@cf. their Fig. 1~b!#.

Hereafter, all of the variables are written in the unit
parent wave parameters for simplicity, i.e., the frequenc
and wave numbers are normalized tov0 and k0, and the
velocities tov0 /k0, respectively. From Eqs.~2!–~15!, to the
first order of the perturbation amplitude, the following eige
value equations are obtained after some calculations.

Fv1S 11
vp

2

c2D 1V0Gdvp11
vp

2

2c2
v1dvp2*

2
1

2 FvpS 11
vp

2

2c2D 1V0hGdup52
v1

k1
db1 ,

~19!

FIG. 1. Solutions of Eq.~35!. The parameters are~a! vs50.1,
~b! vs51.2, andc252.0 is fixed. In each case, the top panel rep
sents the frequencyv for h50, the middle and the third panel
show the realv and imaginaryd frequencies forh50.1 as a func-
tion of the wave numberk.
04640
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Fv2S 11
vp

2

c2D 1V0Gdvp2* 1
vp

2

2c2
v2dvp1

2
1

2 FvpS 11
vp

2

2c2D 1V0hGdup52
v2

k2
db2* ,

~20!

Fv1S 11
ve

2

c2D 2V0Gdve11
ve

2

2c2
v1dve2*

2
1

2 FveS 11
ve

2

2c2D 2V0hGdue5
v1

k1
db1 ,

~21!

Fv2S 11
ve

2

c2D 2V0Gdve2* 1
ve

2

2c2
v2dve1

2
1

2 FveS 11
ve

2

2c2D 2V0hGdue5
v2

k2
db2* ,

~22!

Fv2S 11
vp

2

2c2D 2k2vs
2Gdup5vp

2~dup2due!

2v@vp~db12db2* !

2V0h~dvp12dvp2* !#,

~23!

Fv2S 11
ve

2

2c2D 2k2vs
2Gdue52vp

2~dup2due!

1v@ve~db12db2* !

2V0h~dve12dve2* !#,

~24!

~k1
2 c22v1

2 !db15vp
2k1F ~dvp12dve1!

1
k

2v
~vpdup2vedue!G , ~25!

~k2
2 c22v2

2 !db2* 5vp
2k2F ~dvp2* 2dve2* !

1
k

2v
~vpdup2vedue!G , ~26!

where V05eB0 /m0c, db65edB6 /m0c, and the asterisk
(*) implies the complex conjugate. In deriving the abo
equations,vp

2/c2,ve
2/c2!1 is assumed. The above equatio

are identical to Eqs.~27!–~31! of Muñoz and Gomberoff
@33#, except that the terms6vp

2(dup2due), which originate
from the finite space charge, are included in Eqs.~23! and

-

6-3
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~24!. The dispersion relation is given as a nontrivial soluti
~zero determinant! of Eqs.~19!–~26!:

III. STABILITY ANALYSES FOR NONRELATIVISTIC
PLASMA

In the nonrelativistic limit (vp
2/c2,ve

2/c2→0), the disper-
sion relation is obtained as follows:

vp
2@2S1A~C11C21C31C4!#2S@S1A~C11C4!#

2A2~C1C42C2C3!50, ~27!

A5
V0

2h2

2
,

S5v22k2vs
2,

C15
v

11V0
FV0

2k1

2D1
S v1

k1~v11V0!
2

1

11V0
D

3S V0

v11V0
2

k

v D2
V0

2k2

2D2
S v2

k2~v21V0!
2

1

11V0
D

3S V0

v21V0
2

k

v D2
V0~v22v1!

~v11V0!~v21V0!
G , ~28!

C25
2v

12V0
FV0

2k1

2D1
S v1

k1~v11V0!
2

1

11V0
D

3S V0

v12V0
1

k

v D2
V0

2k2

2D2
S v2

k2~v21V0!
2

1

11V0
D

3S V0

v22V0
1

k

v D G , ~29!

FIG. 2. Solutions of Eq.~34! with same format as Fig. 1. Th
parameters are~a! vs50.1, ~b! vs51.2, andc252.0 andV052.0
are fixed.
04640
C35
v

11V0
FV0

2k1

2D1
S v1

k1~v12V0!
2

1

12V0
D

3S V0

v11V0
2

k

v D2
V0

2k2

2D2
S v2

k2~v22V0!
2

1

12V0
D

3S V0

v21V0
2

k

v D G , ~30!

C45
2v

12V0
FV0

2k1

2D1
S v1

k1~v12V0!
2

1

12V0
D

3S V0

v12V0
1

k

v D2
V0

2k2

2D2
S v2

k2~v22V0!
2

1

12V0
D

3S V0

v22V0
1

k

v D2
V0~v22v1!

~v12V0!~v22V0!
G , ~31!

FIG. 3. Amplitude dependence of the maximum growth ra
The solid lines and the open circles correspond to the solution
Eqs.~35! and~34!, respectively. The parameters are~a! vs50.1, ~b!
vs51.2, andc25V052.0 are fixed.

FIG. 4. Solutions of Eq.~38! with same format as Fig. 1. The
parameters are~a! vp50.5, vs50.1, ~b! vp51.0, vs50.1, andV0

52.0 is fixed.
6-4
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D65S k6
2 2

v6
2

c2 D vA
2 1

V0
2v6

2

v6
2 2V0

2
, ~32!

where vA
2 /c2[V0

2/2vp
25V0

2/(c221)(V0
221). Equation

~27! is appropriate for arbitrary amplitude of parent wav
and gives the same relation for right-~R! and left-hand~L!
polarized waves. We discuss in detail the above disper
relation for various parameter regime in the following se
tions.

Here, it may be convenient to define some labels use
following figures~Figs. 1–7!.

Waves in the background plasma~for h50)

f 6 Parallel ~forward! propagating Alfve´n waves with
(v6 ,k6)

b6 Antiparallel ~backward! propagating Alfve´n waves
with (v6 ,k6)

s6 Parallel or antiparallel (1 or 2) propagating acous
tic waves with (v,k)

l 6 Positive or negative (1 or 2) frequency Langmuir
waves with (v,k)

d6 High frequency electromagnetic waves wi
(v6 ,k6)

Types of the instability

AD Acoustic decay instability~main daughter waves ar
s1 andb2)

AB Alfvén beat instability~main daughter waves aref 1

andb2)
M Modulational instability~depends!
Lb2 Lb2 instability ~main daughter waves arel 1 andb2)

@see text above Eq.~39!#
Lf2 Lf2 instability ~main daughter waves arel 1 and f 2)

@see text above Eq.~40!#

A. Dispersion relation in a plasma without space charge
„vp

2\`…

Whenvp
2→`, i.e., dne5dnp (due5dup), Eq. ~27! is re-

duced as

2S1A~C11C21C31C4!50. ~33!

After some calculations, this is rewritten as

D1D2S2
AV0

2

12V0
2 H k1D2S v1

2

k1~v1
2 2V0

2!
2

1

12V0
2D

3Fv~11v1!V0
2

~v1
2 2V0

2!
1kG2k2D1S v2

2

k2~v2
2 2V0

2!
2

1

12V0
2D

3Fv~11v2!V0
2

~v2
2 2V0

2!
1kG

12D1D2

v2~v11v21v1v21V0
2!

~v1
2 2V0

2!~v2
2 2V0

2!
J 50. ~34!
04640
,

n
-

in

1. Nondispersive case

In the nondispersive limit (V0
2→`), Eq. ~34! gives

~v22k2vs
2!~v2k!~v1k12!~v1k22!2

h2

2vA
2 @~v1k

22!~k22v2v2!21~v1k12!~k22v1v2!2

22vA
2v2~v2k!~v1k12!~v1k22!#50, ~35!

wherevA
2 5c2/(c221) @the last equality holds since we le

here the relativistic Alfve´n velocity, vA
2c2/(c21vA

2 ) to be
unity#. The above dispersion relation is the same as that
tained by Goldstein@5# and Derby@6# in the no displacemen
current limit (vA

2 51 or c2→`) of the MHD. Numerical so-
lutions of Eq.~35! with c252 are shown in Fig. 1 for~a!
vs50.1 and~b! vs51.2. The top panels correspond to th
case withh50 ~no parent wave!, so each labeled line rep
resents the background plasma mode as defined above
arrowed intersections show the interactions which will
unstable for finiteh. The middle and bottom panels show th
real and imaginary frequencies forh50.1. The labels in the
middle panels indicate the types of the instability which a
also summarized above. This format is common in Figs. 1
4, and 5. Whenvs

2,1 ~a!, usual decay instability, in which
the parent wave decays into parallel propagating acoustic
wave s1 and antiparallel propagating Alfve´n-like waveb2

and parallel propagating electromagnetic wave (v1 ,k1),
takes place. Hereafter, we refer to this instability as
‘‘acoustic’’ decay instability. Whenh2!1, vA;O(1), and
0,12vs

2;O(1), themaximum growth rate of this instabil
ity d is obtained as

d5
h~12vs!

1/2

2vAvs
1/2~11vs!

. ~36!

FIG. 5. Solutions of Eq.~27! with the same format as Fig. 1
The parameters are~a! vp50.5,vs50.1, ~b! vp51.0,vs50.1, and
V052.0 is fixed.
6-5
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If there is no displacement current,vA
2 51, whereas the pres

ence of the displacement current~finite c! let vA
2 be larger

than unity, thus reducing the maximum growth rate, Eq.~36!.
The response of the plasma to the perturbation field is
resented by the conduction current. According to the M
well’s equation, when the wave is subluminous~Alfvénic!,
the conduction current is reduced due to the presence o
displacement current. Asvs

2 exceeds unity~b!, the acoustic
decay instability is replaced by the beat instability in whi
the beating of the parent wave with the compressional w
(v,k) generates the parallelf 1 and antiparallelb2 propagat-
ing Alfvén-like waves~Jayanti and Hollweg@14#!. We will
call this as the Alfve´n beat instability here. The maximum
growth rate of this instability is derived as

d5
h3

4A2vA
3 ~vs

221!3/2
. ~37!

As pointed out by Jayanti and Hollweg@14#, the growth rate
decreases rapidly asvs

2 increases since the density perturb
tion is hardly excited ifvs

2 is large.

2. Dispersive case

If the dispersion effect is included, the modulational i
stability appears in addition to the acoustic decay and
Alfvén beat instabilities~cf. Wong and Goldstein@12#!. In an
electron-ion plasma, the right~left!-hand polarized paren
wave is modulationally unstable forvs

2.1(,1). On the
other hand, in the electron-positron plasma, parent wav
either polarization is modulationally unstable whenvs

2,1.
This is because the lowest order dispersion,]3v0 /]k0

3, is
always negative for the Alfve´n waves in the electron
positron plasma. Therefore, the characteristics of the in
bilities are similar to those in the electron-ion plasmas w
left-hand polarized parent waves in which the lowest or
dispersion,]2v0 /]k0

2, is negative. Figure 2 represents t
numerical solutions of Eq.~34! for V052.0. Other param-
eters are the same as in Fig. 1. The modulational instab
k,1 is seen only whenvs

2,1. We note that, by including
the dispersive effect, the Alfve´n beat instability appears eve

FIG. 6. Amplitude dependence of the maximum growth r
@solutions of Eq.~27!#. The parameters are~a! vp50.5, ~b! vp

51.0, andvs50.1 andV052.0 are fixed.
04640
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whenvs
2,1 ~a!, and the Alfvén beat instability growth rate is

increased whenvs
2.1 ~b!. In order to see the amplitude de

pendence of each instability, their maximum growth rates
compared in Fig. 3. Each panel corresponds to~a! vs50.1
and ~b! vs51.2. The solid lines and the open circles a
obtained from Eqs.~35! and ~34!, respectively. Due to the
dispersive effect, the acoustic decay~Alfvén beat! instability
for vs

2,1 (vs
2.1) are enhanced ath&0.1 (h&1) and sup-

pressed ath*0.1 (h*1). In addition, the modulational in
stability and the Alfve´n beat instability forvs50.1 are stabi-
lized at sufficiently largeh. These properties qualitativel
agree with the results obtained for the electron-ion plas
~e.g., Wong and Goldstein@12#, and Hollweg@15#!. Note that
the enhancement of the acoustic decay instability ath&0.1
appears to be different from past studies since the norma
tion factors used here (v0 and k0) are different from early
works, e.g., Wong and Goldstein@12# (V0 andvA).

B. Dispersion relation in a plasma with finite space charge
„vp

2™`…

Whenvp
2 is finite, we should fully solve Eq.~27!. Then,

the Langmuir wave emerges as a normal mode. Numer
solutions of Eq.~27! reveal that the Langmuir branch bring
in drastic changes in the instabilities when 2vp

2,(11V0)2

~or 2vp
2,1), whereas characteristics of the instabilities

main qualitatively the same when 2vp
2.(11V0)2. Hence,

only the former case is focused on here.

FIG. 7. Dependence of the maximum growth rate onvs
2 @solu-

tions of Eq.~27!#. The parameters are~a! vp50.5, ~b! vp51.0, and
h50.1 andV052.0 are fixed. The range 0.1,vs

2,1 in ~a! is ex-
panded in~c!.
6-6
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1. Nondispersive case

If the dispersive effect is neglected, Eq.~27! is reduced as

~v22k2vs
2!~v22k2vs

222vp
2!~v2k!~v1k12!~v1k22!

1
h2

vA
2 $vp

2@~v1k22!~k22v2v2!2

1~v1k12!~k22v1v2!2

22vA
2v2~v2k!~v1k12!~v1k22!#

2SV0
2~v2k!2~v1k!%

1
h4

vA
4

V0
2v2~v2k!@v22vA

2 ~v22k2!#50. ~38!

The numerical solutions of Eq.~38! are plotted in Fig. 4 in
the same format as Fig. 1. Parameters used are~a! vp50.5,
vs50.1, ~b! vp51.0, vs50.1, with V052.0 for all the pan-
els. The Langmuir wavesl 6 are seen. In Fig. 4~a!, two new
types of interactions are observed in addition to the acou
decay instability atk;1.8, which is the only unstable mod
when the space charge is absent@Fig. 1~a!#. The interaction
at k;1.3 is the decay type in which the antiparallel prop
gating Alfvén-like waveb2 interacts with the parallel propa
gating Langmuir-likel 1 wave. We call this interaction the
Lb2 instability. The maximum growth rate of this instabilit
is given by

d5
h

2vA
F ~K21!~4V0

22K2!

2~22K !
G1/2

, ~39!

K5
22@2vp

2~12vs
2!14vs

2#1/2

12vs
2

,

whereK is the wave number at which the interaction tak
place. This interaction is destabilized when 1,K(,2), i.e.,
2vp

2,12vs
2 . On the other hand, atk;0.7 another interac-

tion between the parallel propagating Alfve´n-like f 2 and the
Langmuir-like l 1 waves is observed, which we call the Lf2

instability. The maximum growth rate is

d5
hvp

A2vA~12vs
2!1/2

. ~40!

In Fig. 4~b!, the acoustic decay (k;1.8) and the Lf2 (k
;1.4) instabilities are still unstable. We should point out th
Lf2 instability may be in fact stable for 2vp

21k2vs
2.1, be-

cause the second term in the brackets in Eq.~38!
@2SV0

2(v2k)2(v1k)# is underestimated in the dispersio
less limit. The Lb2 instability is replaced by the Alfve´n beat
instability (k;1.0) with the maximum growth rate

d5
h3vp

2vA
3 F vp

42V0
2~12vs

2!2

~12vs
2!3~12vs

222vp
2!3G 1/2

. ~41!
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The above expression gives~i! vs
2.1, vp

4.V0
2(vs

221)2 or
~ii ! 0,12vs

2,2vp
2,2V0(12vs

2) as the conditions of the
instability. However, asvs

2 is increased in~i!, the growth rate
is decreased because of the high thermal pressure, whi
vp

2 is increased in~ii !, the growth rate is reduced due t
strong electrostatic restoring force.

2. Dispersive case

Numerical solutions of Eq.~27! are shown in Fig. 5, using
the same parameters as in Fig. 4. The modulational insta
ity ~at k!1) and the Alfvén beat instability@~a! at k;1.2,
~b! at k;1.3] appear, as in the no space charge limit wh
we compared Figs. 1 and 2. The Lf2 instability is stabilized
in Fig. 5~b!. The growth rates of the instabilities are com
pared in Fig. 6 as a function ofh. The parameters are~a!
vp50.5, ~b! vp51.0, andvs50.1 andV052.0 are fixed. In
Fig. 6~a!, the acoustic decay and the Lb2 instabilities have
the largest and the second largest growth rates, while
modulational instability has the smallest growth rate for a
h. The Lf2 instability has a larger growth rate than that
the Alfvén beat instability at smallh. The magnitude of the
growth rate of the Lb2 instability is of the same order of tha
of the acoustic decay instability. In Fig. 6~b!, the acoustic
decay instability is again the most dominant. Dependenc
the maximum growth rates onvs

2 is shown in Fig. 7 forV0

52.0, h50.1, and~a! vp50.5 and~b! vp51.0. Whenvp
51.0 @Fig. 7~b!#, three types of instabilities are seen. T
acoustic decay instability is dominant forvs

2&0.65, espe-
cially if vs

2&0.1 it is much more dominant than the other tw
instabilities. The maximum growth rates change rapid
aroundvs

2;0.4, where the acoustic decay and the Alfv´n
beat instabilities degenerate. When 0.65&vs

2&1, the modu-
lational instability is the most dominant, and whenvs

2.1
only the Alfvén beat instability is unstable. The situation
more complicated whenvp50.5 @Fig. 7~a!#. Figure 7~c! is an
expansion of~a!. While the acoustic decay instability is th
most dominant whenvs

2&0.45, the Lb2 instability also has
the same order of magnitude of maximum growth rate. T
Alfvén beat instability becomes the most dominant for 0.
&vs

2&0.75, and at the same time the growth rates of
Lb2 and the acoustic decay instabilities suddenly decre
The jump of the growth rates of the acoustic decay and
Alfvén beat instabilities atvs

2;0.45 are again due to th
degeneracy of roots. For 0.75&vs

2&1 the modulational in-
stability is the most dominant, and whenvs

2.1, only the
Alfvén beat instability is unstable.

IV. STABILITY ANALYSES FOR RELATIVISTIC PLASMA

The relativistic correction of the dispersion relation, E
~27!, is discussed here. We consider a weakly relativis
case, i.e., only terms up to the second order of the pa
wave amplitude is retained (h!1 is assumed!. After some
calculations, the following dispersion relation is obtained

vp
2@Sp1Se1A~C11C21C31C4!#

2@SpSe1AS0~C11C4!#50, ~42!
6-7
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where

Se5v2F11
V0

2h2

c2~12V0!2G2k2vs
2, ~43!

Sp5v2F11
V0

2h2

c2~11V0!2G2k2vs
2, ~44!

S05v22k2vs
2. ~45!

Equation~42! is analogous to Eq.~27!, but the expression o
S is modified by the relativistic effect, and the third term
Eq. ~27! proportional toA2 is omitted due to the weakly
relativistic assumption above. We note that, ignoring the d
placement current is quantitatively equivalent to ignoring
relativistic effect, since a factor of 1/c2 (v0

2/k0
2c2) is in-

cluded in the relativistic correction terms ofSe andSp @Eqs.
~43! and ~44!#. Therefore, the displacement current is ag
included here.

Let us briefly discuss the qualitative differences betwe
Eqs. ~42! and ~27!. In the nondispersive limit, Eq.~42! is
reduced as

g4S v22
k2vs

2

g2 D S v22
k2vs

212vp
2

g2 D ~v2k!~v1k12!

3~v1k22!1
h2

vA
2 H vp

2@~v1k22!~k22v2v2!2

1~v1k12!~k22v1v2!2

22vA
2v2~v2k!~v1k12!

3~v1k22!#2g2V0
2S v22

k2vs
2

g2 D ~v2k!2~v1k!J ,

~46!

where g2511h2/c2. If vs
2/g2, vp

2/g2, and h2/g2 are, re-
spectively, replaced byvs

2 , vp
2 , andh2 in Eq. ~46!, the equa-

tion becomes identical to Eq.~38!. Therefore, inclusion of
the relativity effectively decreases the acoustic speed,
plasma frequency, and the parent wave amplitude. As a
sult, the maximum growth rate of the acoustic decay ins
bility is less ~greater! than Eq.~36! for vs,1/3 (vs.1/3),
and those of the Lb2 and the Lf2 instabilities are less than
Eqs. ~39! and ~40!, respectively. In order to compare th
Alfvén beat instability with the nonrelativistic case@Eq.
~41!#, the contribution from the fourth-order term ofh
should be included in Eqs.~42! and ~46!. In the dispersive
case, on the other hand, we numerically confirmed that
modulational instability is suppressed by the relativistic
fect.

V. NUMERICAL SIMULATION

In order to investigate time evolution of the acoustic d
cay and the Lb2 instabilities, which are dominant whe
04640
-
e

n

e
e-
-

e
-

-

2vp
2,1, numerical simulation is performed by using relati

istic electromagnetic full particle code, in which equation
motion for individual electrons and positrons and the Ma
well’s equations are simultaneously solved in a se
consistent manner. The simulation has only one spatial
mension ~the x direction!, while all the three velocity
dimensions are retained. In the simulation run below, we
the background dc magnetic field be aligned with thex axis,
so that it is assumed that all the waves we are dealing w
are either parallel or antiparallel propagating with respec
the dc magnetic field.

Again, let us explain here some labels used in remain
figures.

P Parent wave
RAD R mode wave generated by the acoustic dec

instability
RLb R mode wave generated by theLb2 instability
R1 R mode wave generated in the nonlinear stage

R2 R mode wave generated in the nonlinear stage
EAD Electrostatic wave generated by the acoustic deca

instability
ELb Electrostatic wave generated by theLb2 instability
E1 Electrostatic wave generated in the nonlinear stag

E2 Electrostatic wave generated in the nonlinear stag

A. Parameters and initial conditions

The parallel propagating monochromatic right-hand circ
larly polarized Alfvén wave, represented by Eq.~13!, is in-
troduced as a parent wave. The initial particle velocities
given by Eq.~16! with Eq. ~17!. The total number of the
spatial grids in the simulation system is 16 384. The num
of particles in each cell is 50 for both electrons and po
trons. The system length is 256.0 (540.96c/vp) and the
time step is 0.006 25 ('0.012v0

21). The physical parameter
used are shown in Table I.

B. Simulation results

Figure 8 shows thev-k power spectrum ofBz and Ex
components in the linear stage (198.4<v0t<396.0). The
gray scale denotes the wave power in the logarithmic sc
As expected from the linear theory, the parent wave~P! de-
cays into two antiparallel propagating electromagnetic wa
(RAD and RLb) and two parallel propagating electrostat
waves (EAD and ELb). A small peak atE1 is produced via
beating of either RAD andRLb , or EAD andELb . This point
will be further analyzed later. We should comment here
the strong vertical bars. The data used here is periodic
space but nonperiodic in time. Especially in the linear sta
the wave amplitude grows exponentially in time. Therefo
the Fourier transformation to such data gives broadb

TABLE I. Physical parameters for simulation.

Parameters of the parent wave Plasma

h 0.1 vp 0.4
v0 1.93762 V0 4.0
Mode number 32 v th /c 0.04
6-8



th

.
av

-

ar
t

n

e
re

r-
is

of
u

ua

e

cket
ined

on,
10

be-

of

he

.4

PARAMETRIC INSTABILITIES OF CIRCULARLY . . . PHYSICAL REVIEW E67, 046406 ~2003!
noise. One may avoid this artifact by using, for instance,
wavelet transformation~Dudok de Wit and Krasnosel’skikh
@34#!.

The time evolution of thek spectra is represented in Fig
9. The top panel shows power of the electromagnetic w
which consists of parallel propagatingR mode waves and
antiparallel propagating L mode waves~we call them theR1

and L2 waves, respectively!. In the middle panel, the elec
tromagnetic wave includingR2 andL1 waves is shown. The
bottom panel is the power ofEx . In the early stage (v0t
;200), only the waves expected by the linear theory
observed (RAD , RLb , EAD , andELb). On the other hand, a
v0t;400, E1 is generated, and laterR1 , R2, and E2 are
excited one after another. One can tell from the resona
condition, Eq. ~1!, that either coupling betweenRAD and
RLb , or betweenEAD and ELb is producingE1. In general,
however, it is difficult to identify the origin of each wav
when many wave modes coexist. For instance, there a
few possibilities to produce the wave modesR2 andE2. One
possibility is that bothR2 andE2 are generated by the inte
action of E1 and other wave modes. Another possibility
that R2 is produced by the coupling betweenE1 and RLb ,
and E2 is generated from the coupling betweenR2 and the
parent waveP. Therefore, in order to determine the origin
waves produced by two wave coupling process, we make
of the bicoherence analysis, as described below.

1. Bicoherence analysis

The bicoherence analysis is a valuable method to eval
the third-order correlation ~see Dudok de Wit and

FIG. 8. v-k power spectra obtained for the period of 198
<v0t<396.0.
04640
e

e

e

ce

a

se

te

Krasnosel’skikh@34#, and references therein! in a given time
series data. The~cross!bispectrum is defined as

B~m1 ,m2!5^X~m1!Y~m2!Z* ~m11m2!&, ~47!

whereX, Y, andZ are the Fourier transform of a given tim
series,m1 andm2 are the mode numbers~or the frequencies!,
the asterisk denotes the complex conjugate, and the bra
denotes the ensemble average. The bicoherence is obta
by normalizing the bispectrum,

b2~m1 ,m2!5
uB~m1 ,m2!u2

^uX~m1!Y~m2!Z* ~m11m2!u&2 . ~48!

The finite values ofb2(m1 ,m2) imply the existence of a
phase coherence~the nonlinear interaction! between the
wave modes atm1 , m2, andm11m2.

Using the dataset obtained by the numerical simulati
we have performed the bicoherence analysis. Figure
shows the result obtained for the period 198.4<v0t
<396.0. The upper left panel denotes the bicoherence
tweenBz(m1), Bz(m2), andEx* (m11m2). A strong interac-
tion occurs between mode numbersm1532 and m2527
;31. Sincem1 andm2 correspond to the mode numbers
the parent waveP and RAD , m11m2559;63 corresponds
to the mode number ofEAD . This interaction, therefore, is
confirmed to be the acoustic decay instability. Similarly, t
interaction betweenm1532 andm2521;23 is shown to be

FIG. 9. Time evolution ofk spectra.
6-9
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S. MATSUKIYO AND T. HADA PHYSICAL REVIEW E 67, 046406 ~2003!
the Lb2 instability. In the upper right panel, the bicoheren
betweenBz(m1), Ex(m2), and Bz* (m11m2) is presented.
The strongest peak atm1521;23 and m257;10 corre-
sponds to the interaction betweenRAD , RLb , and E1. The
interaction betweenEAD , ELb , andE1 appears in the lowe
panel, which is the bicoherence betweenEx(m1), Ex(m2),
and Ex* (m11m2). There exists an unexpected peak in t
upper right panel atm1529;31 andm257;8. This im-
plies that theR1, whose amplitude is still small at this time
is going to be produced via the beating ofE1 andRAD .

Figure 11 shows the bicoherence spectrum obtaine
later time period 992.0<v0t<1189.6. In this period, a vari
ety of wave modes are generated~cf. Fig. 9!. Here, we pay
particular attention to the generation mechanism ofR2 and
E2. First, the strong interaction betweenR2 , E2, and P is
recognized in the upper left panel. At the same time, ifR2 is
produced via the beating ofE1 andRLb as discussed in the
preceding section, a peak should appear around the ma
point in the upper right panel. The interaction is seen, but
peak intensity is weak compared with that of the interact
betweenR2 , E2, andP. Similarly, it is found in the lower
panel that the interaction betweenE1 , ELb , andE2 is weak.
Hence, we conclude that generation ofR2 andE2 is not via
coupling betweenE1 and other wave modes, but is due
decay~second stage! of the parent wave (P→R21E2) in a
plasma already thermalized by the first stage of the deca

FIG. 10. Bicoherence obtained for the period of 198.4<v0t
<396.0. ~i! The upper left panel: the bicoherence betwe
Bz(m1),Bz(m2), andEx* (m11m2). ~ii ! The upper right panel: the
bicoherence betweenBz(m1),Ex(m2) and Bz* (m11m2). ~iii ! The
lower panel: the bicoherence betweenEx(m1),Ex(m2) andEx* (m1

1m2). Here,m1 andm2 denote mode numbers of the correspon
ing wave component.
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2. Second decay instability

The time evolution of the parallel drift (k0vd /v0) and
thermal (k0v th /v0) velocities of electrons are shown in Fig
12~a!, and the electron parallel distribution functions atv0t
5387.5, 581.3, and 775.0 are presented in Fig. 12~b!. The
rapid increase ofk0vd /v0 andk0v th /v0 at 380,v0t,780 is
found in ~a!. This is explained as follows. In~b!, the broad-
ening of the distribution function in 0,k0vx /v0,0.1 at
v0t5387.5 and 581.3 is caused by the resonant trapping
to the acoustic waves driven by the first acoustic decay
stability. In addition, the clear plateau in 0.16,k0vx /v0
,0.3 atv0t5581.3 is produced through the resonant int
action with the Langmuir waves excited by the first Lb2

instability. As a result of these heating and acceleration,
dispersion relation of the background plasma is modifi
The phase velocity ofE2 is estimated as 0.34;0.36, and it is
approximately the same as the phase velocity of the La
muir wave under the modified condition. Therefore, it is co
cluded thatR2 and E2 are excited due to the second Lb2

instability. The second acoustic decay instability is hard
recognized because of the strong Landau damping of
acoustic wave. The Landau damping effectively suppres
the acoustic decay instability sincevs;v th , whereas the Lb2

instability is less affected by the Landau damping beca
the phase velocity of the Langmuir wave is far fromv th .

VI. SUMMARY AND DISCUSSIONS

We studied the linear dispersion relation of the parame
instabilities of the circularly polarized Alfve´n wave in the
relativistic and nonrelativistic electron-positron plasmas. T

-

FIG. 11. Bicoherence obtained for the period of 992.0<v0t
<1189.6 with same format as Fig. 10.
6-10
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PARAMETRIC INSTABILITIES OF CIRCULARLY . . . PHYSICAL REVIEW E67, 046406 ~2003!
analytical expressions of the maximum growth rates of e
instability are obtained in the nondispersive plasma, and
numerical solutions of the dispersion relations are shown
a variety of parameters both in the dispersive and nondis
sive plasmas.

In the electron-positron plasma, the finite space cha
effect is essential if 2vp

2,1. This condition can be realize
in many astrophysical environments~in the electron-ion
plasma, usuallyvpe

2 @V i
2 , wherevpe, V i are the the electron

plasma and ion cyclotron frequencies!. Moreover, the dis-
placement current cannot be neglected in the high ene
astrophysical plasma, since the Alfve´n speed can often b
close to the light speed. Table II summarizes the types of
instabilities we discussed in the nonrelativistic plasma.

In the no space charge limit (vp
2→`), the characteristics

FIG. 12. ~a! Time evolution of electron parallel drift and therm
velocities and~b! electron parallel distribution functions atv0t
5387.5, 581.3, and 775.0.
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of the instability are basically the same as those in
electron-ion plasma, except that the modulational instabi
takes place only forvs

2,1 in the electron-positron plasma
On the other hand, the effect of the space charge canno
ignored if 0,2vp

2,1. The Lb2 and Lf2 instabilities appear
in this case. Although the Lf2 instability is observed when
1,2vp

2,(11V0)2 and dispersive effect is neglected,
may be stable in reality. In fact, we could not find the ins
bility by numerically solving Eq.~27!, even for V0

2@1,
which includes the dispersive effect. Only the Alfve´n beat
instability is unstable regardless of the values ofvp

2 when
vs

2.1, although the maximum growth rate is small. At th
same time, the acoustic decay instability is dominant forvs

2

,1 in a wide parameter regime. In addition, if 0,2vp
2

,1, the Lb2 instability also has the maximum growth ra
comparable with the acoustic decay instability.

In the linear analysis, we have not taken into account
kinetic effects of the plasma. They may be essential ifvs

2

.1. We suspect that the growth rate of the Alfve´n beat in-
stability would be less due to the Landau damping should
formulation be made kinetically.~The kinetic effects on the
acoustic decay instability in the electron-ion plasma are
vestigated in detail by Inhester@35#.! Besides, in the high
energy astrophysical plasma,vs

2,c2'1. This is why we
have mainly discussed the casevs

2,1. However, as men-
tioned in the simulation section, the effect of the Land
damping for the acoustic decay instability may not be n
glected even in this case, sincevs;v th in the electron-
positron plasma. In contrast, the phase velocity of the den
perturbation of the Lb2 instability is not close tov th , so it
may be possible that the parameter range where the2

instability is dominant is wide when 0,2vp
2,1.

The weakly relativistic effect reduces the effective aco
tic speed, the plasma frequency, and the effect of the pa
amplitude. As a result, most of the instabilities, except for
acoustic decay instability forvs.1/3, are suppressed. In o
der to make more accurate analyses on the Alfve´n beat in-
stability, higher order correction terms representing the re
tivistic effect should be included. In addition, we hav
assumed that the plasma temperature is in a nonrelativ
regime. However, in astrophysical applications, the effe
due to relativistically high plasma internal energy may
essentially important. Furthermore, as increasing the am
tude of the parent wave, in reality, the cyclotron frequen
decreases asV0→V0 /g. This effect should be included in
dispersion analysis in the fully relativistic plasma in our f
ture discussions.
TABLE II. Types of the instabilities in the nonrelativistic plasma.

0,2vp
2,1 1,2vp

2,(11V0)2 (11V0)2,2vp
2(vp

2→`)
1/V0

250 1/V0
2Þ0 1/V0

250 1/V0
2Þ0 1/V0

250 1/V0
2Þ0

AD, Lb2, AD, Lb2, AD, AB, AD, AB, AD AD, AB,
vs

2,1 Lf2 AB, Lf 2, (Lf2, see text! M M
M

vs
2.1 AB AB AB AB AB AB
6-11
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The nonlinear evolution of the system has been studied
using the one-dimensional full particle simulation code.
addition to the waves expected by the linear theory, vari
waves are excited by the beating of waves and by the
cessive decay via the Lb2 instability. Decay instabilities both
via the acoustic wave and via the Langmuir wave are
served. It should be emphasized here that the acoustic w
is easily Landau damped, while the Langmuir wave can s
vive. It is known, in general, that the daughter waves
unstable for further decay when they still have a large a
plitude ~see Terasawaet al. @13#!. However, if the Landau
damping is strong enough, the acoustic decay instab
ceases even if the system still has the free energy~see Fig.
13!. On the other hand, the Lb2 instability can successively
occur even if the plasma are heated, since the phase vel
of the Langmuir wave is far fromv th . Successive decay o
Alfvén waves via the Langmuir wave channel provides
plausible candidate for an efficient generation of plasma
bulence.

We should note that our present simulation has not
reached the final state, because of the slow evolution of
system due to insufficient energy of the parent wave. Hen
the simulation with higher energy should be performed
longer running time in the near future, using one-~or more!
dimensional particle code. The particle acceleration
closely related with generation of the turbulence. In a h
hy

m

pn

pn

hy
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energy system, in particular, the relativistic effects may bo
production of energetic particles, since the low frequen
waves excited due to the inverse cascading process prefe
tially interact with heavy~high energy! particles.
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FIG. 13. Schematic picture of the successive decay proce
via ~a! the acoustic decay and~b! the Lb2 instabilities. Although the
successive acoustic decay is stopped due to the Landau dampi
the acoustic waves, the Landau damping affects less the Lang
waves.
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